

Pasadena, CA 91107

(626) 696-3086 https://encore-labs.com Lic# C8-000086-LIC

4,000mg Muscle & Joint Cream

METRC Batch: BACFCACD@1 METRC Sample: Sample ID: 2310ENC1933_6106 Strain: 4,000mg Muscle & Joint Cream Matrix: Topical Type: Lotion Batch#:

Produced: 10/25/2023 Collected: 10/31/2023 Received: 10/31/2023 Completed: 11/01/2023 Sample Size: 1 units;

Distributor **Nirvana Organics**

Lic. # 9383 Cincinnati Columbus Road West Chester, Ohio 45069

Summary

Test	Date Tested	Instr. Method	Result
Batch Cannabinoids	10/31/2023	LC-DAD	Pass Complete

Cannabinoids

Method: SOP EL-CANNABINOIDS

ND			4664.27	mg/unit		4664.27 mg/unit
Total THC	,		Total	CBD		Total Cannabinoids
Analytes	LOD	LOQ	Result	Result	Result	
	mg/g	mg/g	%	mg/g	mg/unit	
THCa	0.126	0.381	ND	ND	ND	
Δ9-THC	0.135	0.408	ND	ND	ND	
Δ8-THC	0.149	0.451	ND	ND	ND	
THCVa	0.145	0.440	ND	ND	ND	
THCV	0.150	0.455	ND	ND	ND	
CBDa	0.132	0.400	ND	ND	ND	
CBD	0.127	0.385	7.774	77.74	4664.27	
CBN	0.120	0.363	ND	ND	ND	
CBGa	0.143	0.434	ND	ND	ND	
CBG	0.132	0.400	ND	ND	ND	
CBCa	0.117	0.354	ND	ND	ND	
СВС	0.137	0.416	ND	ND	ND	
Total THC			ND	ND	ND	
Total CBD			7.774	77.74	4664.270	
Total Cannabinoids			7.774	77.74	4664.270	
Sum of Cannabinoids			7.774	77.74	4664.270	

1 Unit = 60g;

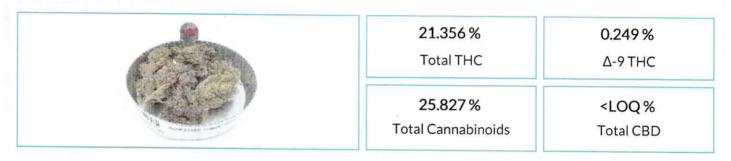
Total THC = THCa * 0.877 + Δ9-THC + Δ8-THC; Total CBD = CBDa * 0.877 + CBD; Total Cannabinoids = (cannabinoid acid forms * 0.877) + cannabinoids; Sum of Cannabinoid acid forms + cannabinoids; LOQ = Limit of Quantitation; LOD = Limit of Detection; NT = Not Tested; ND = Not Detected. The reported result is based on a sample weight with the applicable moisture content for that sample. Foreign Material Method: SOP EL-FOREIGN; Moisture and Water Activity Method: SOP EL-WATER

no Kevin Nolan Laboratory Director | 11/01/2023

This report is not a California regulatory compliance certificate, it is for R&D/Quality Assurance purposes only. Values reported relate only to the product tested. Sample was tested as received from client. Encore Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Encore Labs.

Certificate of Analysis

Page: 1 of 1


Complete

Nirvana Organics

Sample: 06-23-2023-33955 Sample Received:06/23/2023; Report Created: 06/26/2023; Expires: 06/26/2024

Apple Tartz Plant, Flower - Uncured

New Bloom Labs

Cannabinoids

(Testing Method:HPLC, CON-P-3000) Date Tested: 06/26/2023

Analyte	1.60	1.00	Mass	Mass	
	u,	%	%	mg/g	
Δ-8-Tetrahydrocannabinol (Δ-8 THC)	0.0500	0.0750	ND	ND	
Δ-9-Tetrahydrocannabinol (Δ-9 THC)	0.0500	0.0750	0.249	2.490	6
Δ-9-Tetrahydrocannabinolic Acid (THCA-A)	0.0500	0.0750	24.067	240.670	
Δ-9-Tetrahydrocannabiphorol (Δ-9-THCP)	0.0500	0.0750	ND	ND	
Δ-9-Tetrahydrocannabivarin (Δ-9-THCV)	0.0500	0.0750	ND	ND	
Δ-9-Tetrahydrocannabivarinic Acid (Δ-9-THCVA)	0.0500	0.0750	0.086	0.860	0
R-Δ-10-Tetrahydrocannabinol (R-Δ-10-THC)	0.0500	0.0750	ND	ND	
S-Δ-10-Tetrahydrocannabinol (S-Δ-10-THC)	0.0500	0.0750	ND	ND	
9R-Hexahydrocannabinol (9R-HHC)	0.0500	0.0750	ND	ND	
9S-Hexahydrocannabinol (9S-HHC)	0.0500	0.0750	ND	ND	
Tetrahydrocannabinol Acetate (THCO)	0.0500	0.0750	ND	ND	
Cannabidivarin (CBDV)	0.0500	0.0750	ND	ND	
Cannabidivarinic Acid (CBDVA)	0.0500	0.0750	ND	ND	
Cannabidiol (CBD)	0.0500	0.0750	ND	ND	
Cannabidiolic Acid (CBDA)	0.0370	0.0750	<loq< td=""><td><loq< td=""><td>10</td></loq<></td></loq<>	<loq< td=""><td>10</td></loq<>	10
Cannabigerol (CBG)	0.0500	0.0750	0.088	0.880	1
Cannabigerolic Acid (CBGA)	0.0500	0.0750	1.135	11.350	1
Cannabinol (CBN)	0.0500	0.0750	ND	ND	
Cannabinolic Acid (CBNA)	0.0500	0.0750	ND	ND	
Cannabichromene (CBC)	0.0500	0.0750	ND	ND	
Cannabichromenic Acid (CBCA)	0.0500	0.0750	0.202	2.020	1
Total			25.827	258.270	

Total THC = THCa * 0.877 + Δ9-THC;Total CBD = CBDa * 0.877 + CBD; LOQ = Limit of Quantitation; ND = Not Detected.

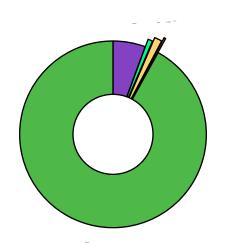
Total THC Measurement of Uncertainty: $\pm 0.040\%$ Total CBD Measurement of Uncertainty: $\pm 2.000\%$ THCO potency analysis does not designate quantitative specificity of Δ -8-THCO and Δ -9-THCO isomers

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

Laboratory Director

Powered by reLIMS info@relims.com

All analyses were conducted at 6121 Heritage Park Dr, Suite A500 Chattanooga. TN 37416. Results published on this certificate relate only to the items tested. Items are tested as received. New



Sample Name: Blueberry Muffin Client: Nirvana Organics Client Batch ID: Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

Sample ID: rC-H-276-E193 Matrix: Flower Prep Analyst: Jeff A. Analysis Method: 0630322+1 H3 4-20-2022 #1.lcm Sampling Method: N/A Reference Method: JCB 2009: HPLC/DAD Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

Date Sampled: 1/25/2024 Date Reported: 1/26/2024 Client License: N/A For R&D Purposes Only

Total THC (THCA*0.877+d9-THC)	22.1%
Total CBD (CBDA*0.877+CBD)	<loq%< th=""></loq%<>
Moisture Content	10.7%

Cannabinoid	% Weight	mg/g
CBDVA	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDA*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBGA	0.13	1.3
CBG	0.308	3.08
CBD*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
THCV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBN	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
d9-THC*	0.201	2.01 /
d8-THC*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBC	0.113	1.13
THCA*	25.0	250.0
Total Cannabinoids		257.5
*ORELAP Accredited Analyte Limit Of Quantitation: 0.1%, a		ured

CBGA CBG CBG THCA*

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director

Analyst: Jeff A.

Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

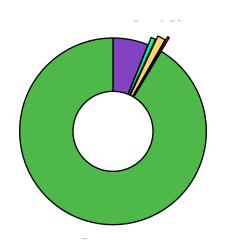
Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

	Duplicate RPD H-0-E192-b Limit		LCS % Recovery C-FL-012624 Limits		Method B C-FB-012624	
CBDA	<loq%< th=""><th>30%</th><th>102.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	102.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
CBD	<loq%< th=""><th>30%</th><th>106.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	106.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d9-THC	0.192%	30%	91.4%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d8-THC	<loq%< th=""><th>30%</th><th>95.7%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	95.7%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
THCA	4.53%	10%	94.9%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2

RPD: Relative Percent Difference between unknown sample and its duplicate LCS: Laboratory Control Sample with known concentration Case Comments: There were no divergences from ordinary Quality Control procedures or SOPs.

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director



Sample Name: Gelato 41 Client: Nirvana Organics Client Batch ID: Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

Sample ID: rC-H-276-E194 Matrix: Flower Prep Analyst: Jeff A. Analysis Method: 0630322+1 H3 4-20-2022 #1.lcm Sampling Method: N/A Reference Method: JCB 2009: HPLC/DAD Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

Date Sampled: 1/25/2024 Date Reported: 1/26/2024 Client License: N/A For R&D Purposes Only

Total THC (THCA*0.877+d9-THC)	22.2%
Total CBD (CBDA*0.877+CBD)	<loq%< th=""></loq%<>
Moisture Content	11.2%

Cannabinoid	% Weight	mg/g
CBDVA	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDA*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBGA	0.35	3.5
CBG	0.31	3.1
CBD*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
THCV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBN	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
d9-THC*	0.237	2.37
d8-THC*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBC	0.122	1.22
THCA*	25.1	251.0
Total Cannabinoids		261.2
*ORELAP Accredited Analyte Limit Of Quantitation: 0.1%, a		ured

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director

Analyst: Jeff A.

Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

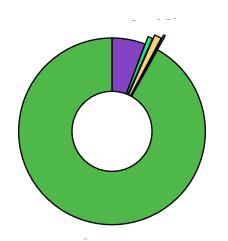
Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

	Duplicate RPD H-0-E192-b Limit		LCS % Recovery C-FL-012624 Limits		Method B C-FB-012624	
CBDA	<loq%< th=""><th>30%</th><th>102.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	102.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
CBD	<loq%< th=""><th>30%</th><th>106.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	106.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d9-THC	0.192%	30%	91.4%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d8-THC	<loq%< th=""><th>30%</th><th>95.7%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	95.7%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
THCA	4.53%	10%	94.9%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2

RPD: Relative Percent Difference between unknown sample and its duplicate LCS: Laboratory Control Sample with known concentration Case Comments: There were no divergences from ordinary Quality Control procedures or SOPs.

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director



Sample Name: *Platinum OG* Client: Nirvana Organics Client Batch ID: Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

Sample ID: rC-H-276-E196 Matrix: Flower Prep Analyst: Jeff A. Analysis Method: 0630322+1 H3 4-20-2022 #1.lcm Sampling Method: N/A Reference Method: JCB 2009: HPLC/DAD Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

Date Sampled: 1/25/2024 Date Reported: 1/26/2024 Client License: N/A For R&D Purposes Only

Total THC (THCA*0.877+d9-THC)	24.4%
Total CBD (CBDA*0.877+CBD)	<loq%< th=""></loq%<>
Moisture Content	10.0%

Cannabinoid	% Weight	mg/g
CBDVA	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDA*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBGA	0.17	1.7
CBG	0.291	2.91
CBD*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
THCV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBN	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
d9-THC*	0.244	2.44 /
d8-THC*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBC	0.107	1.07
THCA*	28.1	281.0
Total Cannabinoids		289.1
*ORELAP Accredited Analyte Limit Of Quantitation: 0.1%, a		ured

CBGA CBG CBG THCA*

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director

Analyst: Jeff A.

Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

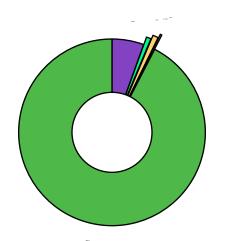
Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

	Duplicate RPD H-0-E192-b Limit		LCS % Recovery C-FL-012624 Limits		Method B C-FB-012624	
CBDA	<loq%< th=""><th>30%</th><th>102.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	102.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
CBD	<loq%< th=""><th>30%</th><th>106.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	106.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d9-THC	0.192%	30%	91.4%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d8-THC	<loq%< th=""><th>30%</th><th>95.7%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	95.7%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
THCA	4.53%	10%	94.9%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2

RPD: Relative Percent Difference between unknown sample and its duplicate LCS: Laboratory Control Sample with known concentration Case Comments: There were no divergences from ordinary Quality Control procedures or SOPs.

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director



Sample Name: Runtz of Eden Client: Nirvana Organics Client Batch ID: Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

Sample ID: rC-H-276-E192 Matrix: Flower Prep Analyst: Jeff A. Analysis Method: 0630322+1 H3 4-20-2022 #1.lcm Sampling Method: N/A Reference Method: JCB 2009: HPLC/DAD Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

Date Sampled: 1/25/2024 Date Reported: 1/26/2024 Client License: N/A For R&D Purposes Only

Total THC (THCA*0.877+d9-THC)	22.0%
Total CBD (CBDA*0.877+CBD)	<loq%< th=""></loq%<>
Moisture Content	9.6%

Cannabinoid	% Weight	mg/g
CBDVA	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDA*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBGA	1.09	10.9
CBG	0.305	3.05
CBD*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
THCV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBN	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
d9-THC*	0.264	2.64 /
d8-THC*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBC	0.109	1.09
THCA*	24.8	248.0
Total Cannabinoids	26.57	265.7
*ORELAP Accredited Analyte Limit Of Quantitation: 0.1%, a	e analyte not measu	ured

CBGA CBG CBG THCA*

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director

Analyst: Jeff A.

Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

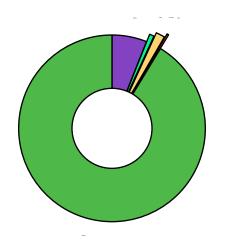
Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

	Duplicate H-0-E192-b			ecovery 4 Limits	Method B C-FB-012624	
CBDA	<loq%< th=""><th>30%</th><th>102.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	102.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
CBD	<loq%< th=""><th>30%</th><th>106.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	106.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d9-THC	0.192%	30%	91.4%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d8-THC	<loq%< th=""><th>30%</th><th>95.7%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	95.7%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
THCA	4.53%	10%	94.9%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2

RPD: Relative Percent Difference between unknown sample and its duplicate LCS: Laboratory Control Sample with known concentration Case Comments: There were no divergences from ordinary Quality Control procedures or SOPs.

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director



Sample Name: Tuscan Gelato Client: Nirvana Organics Client Batch ID: Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

Sample ID: rC-H-276-E195 Matrix: Flower Prep Analyst: Jeff A. Analysis Method: 0630322+1 H3 4-20-2022 #1.lcm Sampling Method: N/A Reference Method: JCB 2009: HPLC/DAD Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

Date Sampled: 1/25/2024 Date Reported: 1/26/2024 Client License: N/A For R&D Purposes Only

Total THC (THCA*0.877+d9-THC)	24.2%
Total CBD (CBDA*0.877+CBD)	<loq%< th=""></loq%<>
Moisture Content	10.3%

Cannabinoid	% Weight	mg/g
CBDVA	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBDA*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBGA	0.33	3.3
CBG	0.308	3.08
CBD*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
THCV	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBN	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
d9-THC*	0.21	2.1
d8-THC*	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
CBC	0.119	1.19
THCA*	27.3	273.0
Total Cannabinoids	28.27	282.7
*ORELAP Accredited Analyte Limit Of Quantitation: 0.1%, a		ured

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director

Analyst: Jeff A.

Analysis Batch: 1-26-2024 H3 276, 288, 457 Flower

Pinnacle-Analytics.com 3549 Lear Way, Suite 101 Medford OR 97504 P:(541)300-8217

	Duplicate H-0-E192-b			ecovery 4 Limits	Method B C-FB-012624	
CBDA	<loq%< th=""><th>30%</th><th>102.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	102.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
CBD	<loq%< th=""><th>30%</th><th>106.0%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	106.0%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d9-THC	0.192%	30%	91.4%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
d8-THC	<loq%< th=""><th>30%</th><th>95.7%</th><th>90-110%</th><th><loq 2<="" th=""><th>LOQ/2</th></loq></th></loq%<>	30%	95.7%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2
THCA	4.53%	10%	94.9%	90-110%	<loq 2<="" th=""><th>LOQ/2</th></loq>	LOQ/2

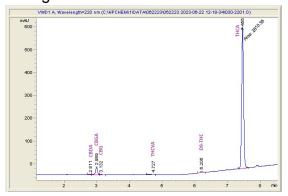
RPD: Relative Percent Difference between unknown sample and its duplicate LCS: Laboratory Control Sample with known concentration Case Comments: There were no divergences from ordinary Quality Control procedures or SOPs.

These test results may not be altered or reproduced except in full without the permission of Pinnacle Analytics. These results were generated following the Oregon Administrative Rules and in accordance with the NELAP Institute under ORELAP License #4152 Report generated by Routine_Potency_Rev13_8-1-2023

Kris Ford, PhD Lab Director

Nirvana Organics

Sample 614-062223-040


Exotic Gelato

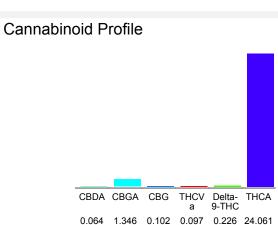
Sample Submitted: 06-22-2023; Report Date: 06-27-2023

Exotic Gelato

Plant Material: Flower

Chromatogram

Cannabinoid Profile by HPLC

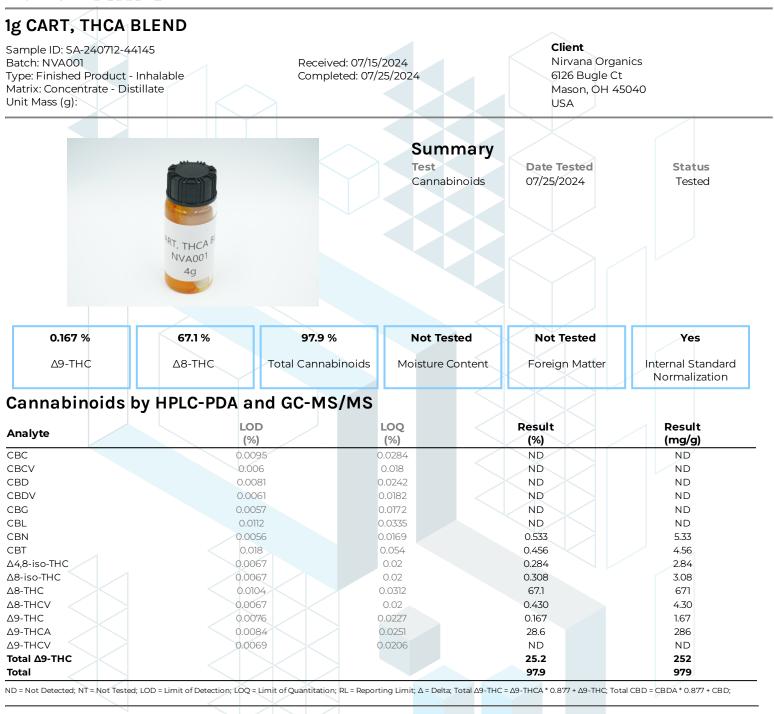

Marin Analytics, LLC 250 Bel Marin Keys Blvd, Suite D4 Novato, CA 94949

833-321-TEST / info@marinanalytics.com

Dara Biancald

Sara Biancalana Chief Scientist

This sample has been tested by Marin Analytics, LLC using valid testing methodologies and a quality system. Values reported relate only to the sample tested. Marin Analytics, LLC makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full without the written approval of Marin Analytics, LLC. Copyright 2023 Marin Analytics, LLC All Rights Reserved.


Cannabinoid	% wt	mg/g
CBDA	0.064	0.64
CBGA	1.346	13.46
CBG	0.102	1.02
THCVa	0.097	0.97
Delta-9-THC	0.226	2.26
THCA	24.06	240.61
Total Cannabinoids	25.90	259.0
Calculated CBD Yield	0.06	0.56

Calculated Total THC = Delta-9-THC + 0.877 * THCA Calculated Maximum CBD Yield = CBD + 0.877 * CBDA KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

kca

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 1

Generated By: Ryan Bellone CCO Date: 07/25/2024

Tested By: Scott Caudill Laboratory Manager Date: 07/25/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 1

CBD CHOCOLATE 500 MG (RECOVERY BAR MILK, REGULAR BAR DARK) Client Sample ID: SA-240802-45648 Collected: 08/02/2024 Nirvana Organics Batch: 07/16/2024 Received: 08/05/2024 9383 Cincinnati Columbus Rd Type: Other Completed: 08/13/2024 Matrix: Edible - Chocolate Westchester, OH 45069 Unit Mass (g): 58.12986 USA Summary Test Date Tested Status 08/13/2024 Cannabinoids Tested ND 0.623 % Not Tested Not Tested 0.623 % Yes Total ∆9-THC CBD **Total Cannabinoids Moisture Content** Foreign Matter Internal Standard Normalization **Cannabinoids by HPLC-PDA** LOO LOD Result Result Result Analyte (mg/unit) (%) (%) (%) (mg/g) CBC 0.00284 ND 0.00095 ND ND CBCA 0.00181 0.00543 ND ND ND CBCV 0.0006 0.0018 ND ND ND CBD 0.00081 0.00242 6.23 0.623 362 CBDA 0.00043 0.0013 ND ND ND CBDV 0.00061 0.00182 ND ND ND CBDVA 0.00063 0.00021 ND ND ND 0.00172 CBG 0.00057 ND ND ND CBGA 0.00049 0.00147 ND ND ND CBL 0.00112 0.00335 ND ND ND CBLA 0.00371 ND ND ND 0.00124 CBN 0.00056 0.00169 ND ND ND CBNA 0.0006 0.00181 ND ND ND CBT 0.0018 0 0054 ND ND ND 0.00312 A8-THC 0.00104 ND ND ND ∆9-THC 0.00076 0.00227 ND ND ND Δ9-THCA 0.00084 0.00251 ND ND ND Δ9-THCV 0.00069 0.00206 ND ND ND ∆9-THCVA 0.00062 0.00186 ND ND ND

Total ∆9-THC Total

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC + δ .877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

ND

0.623

Generated By: Ryan Bellone CCO Date: 08/13/2024

Tested By: Kelsey Rogers

Scientist Date: 08/13/2024

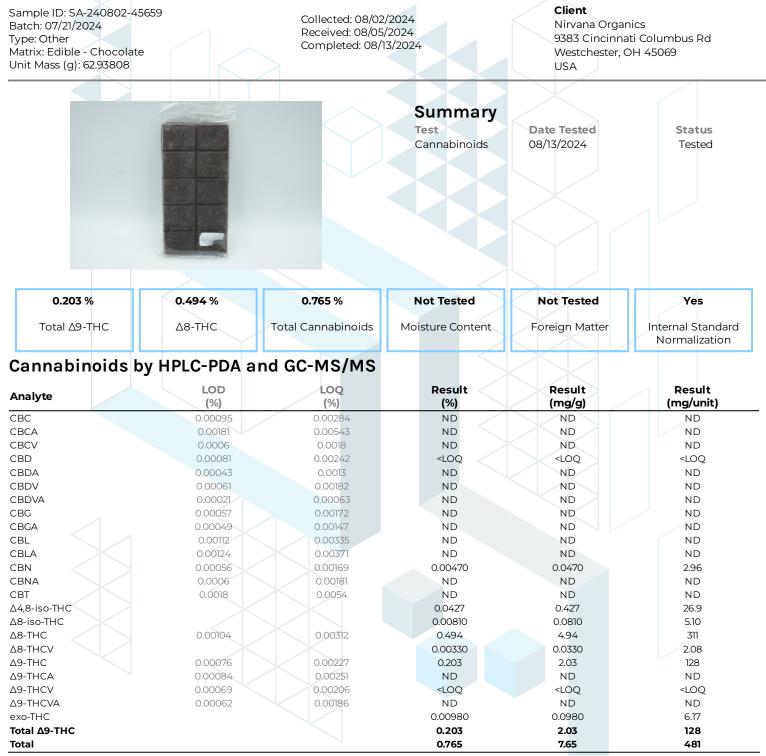
ND

362

ND

6.23

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.


KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 1

D8+D9 CHOCO BAR 670 MG (DARK, MILK)

kca

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 08/13/2024

Tested By: Kelsey Rogers

Scientist Date: 08/13/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 1

Sample ID: SA-240802-45666 Batch: 07/18/2024 Type: Other Matrix: Edible - Gummy Jnit Mass (g): 4.6502		Collected: 08/02 Received: 08/05, Completed: 08/1	/2024	Client Nirvana Organics 9383 Cincinnati Columbus Rd Westchester, OH 45069 USA	
			Summary Test Cannabinoids	Date Tested 08/15/2024	Status Tested
0.162 % Total Δ9-THC	1.40 % Δ8-THC	1.62 % Total Cannabinoids	Not Tested Moisture Content	Not Tested Foreign Matter	Yes
	Ť I				Normalization
	LOD	L	00 (%)	Result (%)	Result
nalyte		L	OQ (%) 00284	Result (%) ND	
analyte BC	LOD (%)	L 0.0	(%)	(%)	Result (mg/unit)
nalyte BC BCA	LOD (%) 0.00095	L 0.0 0.0	(%) 00284	(%) ND	Result (mg/unit) ND
BC BCA BCV	LOD (%) 0.00095 0.00181	L 0.0 0.0 0.0	(%) 00284 00543	(%) ND ND	Result (mg/unit) ND ND
BC BCA BCV BD	LOD (%) 0.00095 0.00181 0.0006 0.00081	L 0.0 0.0 0.0 0.0	(%) 00284 00543 0018 00242	(%) ND ND 0.00320	Result (mg/unit) ND ND ND 0.149
BC BCA BCV BD BDA	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043	L 0.0 0.0 0.0 0.0 0.0 0.0	(%) 00284 00543 0018 00242 0013	(%) ND ND 0.00320 ND	Result (mg/unit) ND ND ND 0.149 ND
BC BCA BCV BD BDA BDA BDV	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(%) 00284 00543 0018 00242 0013 00182	(%) ND ND 0.00320 ND <loq< td=""><td>Result (mg/unit) ND ND ND 0.149 ND <loq< td=""></loq<></td></loq<>	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""></loq<>
malyte BC BCA BCV BD BDA BDV BDVA	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(%) 00284 00543 0018 00242 0013 00182 00063	(%) ND ND 0.00320 ND <loq ND</loq 	Result (mg/unit) ND ND ND 0.149 ND <loq ND</loq
BC BCA BCA BD BDA BDV BDVA BDVA BC	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00027	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172	(%) ND ND 0.00320 ND <loq< td=""><td>Result (mg/unit) ND ND ND 0.149 ND <loq< td=""></loq<></td></loq<>	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""></loq<>
BC BCA BCA BCV BD BDA BDV BDVA BDV BDVA BC BCA	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063	(%) ND ND 0.00320 ND <loq ND ND ND ND</loq 	Result (mg/unit) ND ND ND 0.149 ND <loq ND ND ND ND</loq
BC BC BCA BCV BD BDA BDA BDV BDVA BC BCA BCA BL	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172 00147	(%) ND ND 0.00320 ND <loq ND ND</loq 	Result (mg/unit) ND ND ND 0.149 ND <loq ND ND ND</loq
BC BCA BCV BD BDA BDA BDV BDVA BG BGA BL BLA	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00057 0.00049 0.00112	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172 00147 00335	(%) ND ND 0.00320 ND <loq ND ND ND ND ND ND</loq 	Result (mg/unit) ND ND ND 0.149 ND <loq ND ND ND ND ND ND</loq
Analyte BC BCA BCV BDD BDA BDV BDVA BCA BCA BL BLA BBLA BBN	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172 00147 00335 00371	(%) ND ND 0.00320 ND <loq ND ND ND ND ND ND ND ND ND</loq 	Result (mg/unit) ND ND ND 0.149 ND <loq ND ND ND ND ND ND ND ND ND</loq
Analyte BC BCA BCV BDA BDA BDV BDVA BDVA BC BCA BCA BL BLA BLA BN BNA	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172 00147 00335 00371 00169	(%) ND ND 0.00320 ND <loq ND ND ND ND ND ND ND ND ND ND 0.0107</loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND ND ND <loq< td=""> ND ND</loq<></loq<>
Analyte	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172 00147 00335 00371 00169 00181	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND ND ND ND ND ND</loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND ND <loq< td=""> ND ND</loq<></loq<>
Analyte BC BCA BCV BD BDA BDV BDV BDVA BDV BDVA BC BCA BL BLA BLA BN BNA BNA BT 44,8-iso-THC	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172 00147 00335 00371 00169 00181	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND ND ND ND <loq </loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND ND ND <loq< td=""> ND <loq< td=""></loq<></loq<></loq<>
Analyte BC BCA BCA BCV BDA BDA BDV BDVA BDV BDVA BC BCA BL BLA BLA BNA BNA BT A4,8-iso-THC A8-iso-THC	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) 00284 00543 0018 00242 0013 00182 00063 00172 00147 00335 00371 00169 00181	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND ND ND 0.0107 ND <loq 0.0287</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND ND <loq< td=""> ND 1.33</loq<></loq<>
Analyte BC BCA BCV BDA BDV BDV BDVA BC BCA BL BLA BLA BLA BNA BT A4,8-iso-THC A8-THC	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006 0.0018	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) D0284 D0543 D018 D0242 D013 D0182 D0063 D0172 D0147 D0335 D0371 D0169 D0181 0054	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND ND 0.0107 ND <loq 0.0287 0.00970</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND ND ND <loq< td=""> ND ND ND</loq<></loq<></loq<></loq<></loq<>
Analyte BC BCA BCV BD BDA BDV CBDV CBDVA CBC CBCA	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006 0.0018 0.00104	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) D0284 D0543 D018 D0242 D013 D0182 D0063 D0172 D0147 D0335 D0371 D0169 D0181 0054	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND ND 0.0107 ND <loq 0.0287 0.00970 1.40</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND ND ND <loq< td=""> 133 0.451 65.0</loq<></loq<></loq<></loq<></loq<>
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBC	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00021 0.00057 0.00049 0.00112 0.00124 0.00056 0.0006 0.0018	L 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(%) D0284 D0543 D018 D0242 D013 D0182 D0063 D0172 D0147 D0335 D0169 D0181 D054	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND ND 0.0107 ND <loq 0.0287 0.00970 1.40 0.00150</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND ND ND <loq< td=""> 133 0.451 65.0 0.0698</loq<></loq<></loq<></loq<></loq<>
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBC	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00057 0.00049 0.00112 0.00124 0.00016 0.0006 0.0018		(%) D0284 D0543 D018 D0242 D013 D0182 D0063 D0172 D0147 D0335 D0171 D0169 D0181 D054 D00312 D0227	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND 0.0107 ND <loq 0.0287 0.00970 1.40 0.00150 0.162</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND ND ND <loq< td=""> 133 0.451 65.0 0.0698 7.51</loq<></loq<></loq<></loq<></loq<>
Analyte CBC CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBC	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006 0.0006 0.0018 0.00104 0.00076 0.00076 0.00084 0.00069		(%) D0284 D0543 D018 D0242 D013 D0182 D0063 D0172 D0147 D0335 D0371 D0169 D0181 D054 D0227 D0227 D0226	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND 0.0107 ND <loq 0.0287 0.00970 1.40 0.00150 0.162 ND ND ND</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND ND ND <loq< td=""> 133 0.451 65.0 0.0698 7.51 ND ND</loq<></loq<></loq<></loq<></loq<>
Analyte CBC CBCA CBCA CBCV CBD CBDA CBDV CBDVA CBDVA CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.000124 0.00056 0.0006 0.0008 0.00104		(%) D0284 D0543 D018 D0242 D013 D0182 D0063 D0172 D0147 D0335 D0170 D0169 D0181 D054 D0227 D0221	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND 0.0107 ND <loq 0.0287 0.00970 1.40 0.00150 0.162 ND ND ND ND ND ND ND ND ND ND</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND ND ND ND ND ND ND ND 0.498 ND <loq< td=""> 1.33 0.451 65.0 0.0698 7.51 ND ND ND</loq<></loq<></loq<></loq<></loq<>
Cannabinoids by Analyte CBC CBCA CBCA CBCV CBD CBDA CBDA CBDV CBDVA CBDVA CBG CBGA CBL CBLA CBLA CBLA CBLA CBLA CBLA CBLA	LOD (%) 0.00095 0.00181 0.0006 0.00081 0.00043 0.00061 0.00021 0.00057 0.00049 0.00112 0.00124 0.00124 0.00056 0.0006 0.0006 0.0018 0.00104 0.00076 0.00076 0.00084 0.00069		(%) D0284 D0543 D018 D0242 D013 D0182 D0063 D0172 D0147 D0335 D0371 D0169 D0181 D054 D0227 D0227 D0226	(%) ND ND ND 0.00320 ND <loq ND ND ND ND ND 0.0107 ND <loq 0.0287 0.00970 1.40 0.00150 0.162 ND ND ND</loq </loq 	Result (mg/unit) ND ND ND 0.149 ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND ND ND <loq< td=""> 133 0.451 65.0 0.0698 7.51 ND ND</loq<></loq<></loq<></loq<></loq<>

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

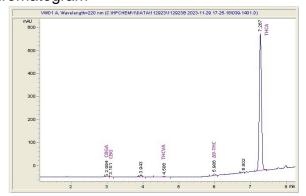
Generated By: Ryan Bellone CCO Date: 08/15/2024

Tested By: Scott Caudill Laboratory Manager Date: 08/15/2024

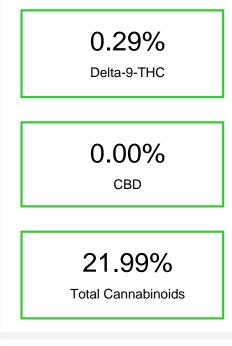
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

Nirvana Organics

Sample 614-112923-115


Wedding Cake

Sample Submitted: 11-29-2023; Report Date: 11-30-2023


Wedding Cake THC-A Hemp

Plant Material: Hemp Flower

Chromatogram

Cannabinoid Profile by HPLC

Cannabinoid	% wt	mg/g
CBGA	0.312	3.12
CBG	0.065	0.65
THCVa	0.13	1.3
Delta-9-THC	0.293	2.93
THCA	21.19	211.92
Total Cannabinoids	21.99	219.9
Calculated CBD Yield	0.00	0.00

CBGA CBG

THCV

а

0.312 0.065 0.13 0.293 21.192

Delta-

9-THC

THCA

Calculated Total THC = Delta-9-THC + 0.877 * THCA Calculated Maximum CBD Yield = CBD + 0.877 * CBDA

Marin Analytics, LLC 250 Bel Marin Keys Blvd, Suite D4 Novato, CA 94949

833-321-TEST / info@marinanalytics.com

Mike Clemmons Lab Manager

This sample has been tested by Marin Analytics, LLC using valid testing methodologies and a quality system. Values reported relate only to the sample tested. Marin Analytics, LLC makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full without the written approval of Marin Analytics, LLC. Copyright 2023 Marin Analytics, LLC All Rights Reserved.

Cannabinoid Profile